Graded territories: Towards the design, specification and simulation of materially graded bending active structures
Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette; Jungjohann, Hauke; Markov, Ivan
Published in: In Synthetic Digital Ecologies

Publication date: 2012
Document Version Peer reviewed version

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Graded territories:

Towards the design, specification and simulation of materially graded bending active structures

Martin Tamke, CITA | Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Paul Nicholas, CITA | Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Mette Ramsgard Thomsen, CITA | Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Hauke Jungjohann, Knippers Helbig, Advanced Engineering, Stuttgart, New York
Ivan Markov, RPI | Rensselaer Polytechnic Institute, Troy, NY

Abstract

The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within these structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material element as well as the structure. We describe an evolving approach to material specification and simulation, and highlight the digital and material considerations that frame the process.

1 New Materials, New Structures

Most architectural structures have been compression-based and the shape of the structure, as opposed to the calculation of material properties and stresses, has been the primary factor governing stability. The process of designing the correct geometry involved careful reference to guarded systems of geometric compositional rules, developed around long experience of particular materials. Large scale models were a key tool against which this structural understanding could be represented, tested and proven - if the model was stable then the building would be too (Heyman 1998).

In response to the development of new materials and their application within new structures across the 18th and 20th centuries, this geometric understanding was replaced by an approach based on the calculation of material properties, loads and deflections. An accompanying interest emerged for specifying materials based on their mechanical properties and behaviour under loading, and of materials and structures based on properties other than compression. Examples include the tensile form-finding and thin
shell projects of Otto, Isler and Candela (Isler 2008). These structures are termed form-active, meaning that their form and the forces applied to it are interdependent—they differ from previous types of structure in that they are form-found, based on material behavior and structural characteristics (Menges 2010).

Figure 1. Homogenous and Non-homogenous strips in similar loading conditions.

Today, designed materials extend the opportunities for the specification and design of form-active structures. Thermoplastic matrix composites in particular represent an important innovation; they greatly simplify composite production, allow for higher precision in the placement and orientation of fibre, and are easily recycled, while possessing mechanical properties equivalent or better than traditional thermoset matrix composites. These advances allow the use of fibre reinforced composites beyond their current framework. For architects and engineers, the implication is of a practice built around the precise specification of material properties to meet specific performance conditions—a new level of design operation in which global performance can be tailored at the material scale (Nicholas 2011). For example, within a composite structure a change in geometry can be created by grading of material stiffness. This can be observed in a single strip of material, where the differentiation of stiffness along its length changes the resulting shape from a symmetrical curve in a homogenous material setup to a non-symmetrical one (Figure 1), as the shape is determined through the interplay between force and the graded material. By combining stiffer and more flexible elements, the same differentiation can occur at the level of the structure. To further develop this practice requires representation and simulation approaches that embed an in-depth understanding of material behaviour within the design process.
2 Active Bending and its Representation

The productive use of the elastic behaviour of materials has a history in vernacular architecture. Yet only few examples have been constructed in 20th century. The Mannheim Gridshell is the most prominent example (Happold 1975). Here, the use of elastic deformation was mainly utilised as an economic construction method for double curved shell structures which themselves were mostly form-found based on hanging models or simple analytical approaches. Newer gridshell examples continue to avoid active bending by ‘locking’ the material after an initial bending. An example is the Savill Building, where two layers of larch laths are bent and then interlocked to create a single beam (Harris 2003).

The exploration of active bending continues in an academic context, through experimental structures as the Hybgrid project at the AA London in which plastic-based members are bolted together (Verde 2003) or the Thaw installation of CITA (Ramsgaard Thomsen 2011) (Figure 2), which explores the making of a woven structure made of ash slats braced together by steel joints. In the latter the joints are fixed but each member uses the elastic behaviour of the wood slats not only to generate shape but to activate dynamic behaviour when actuated. In Thaw the dynamic structure adapts as forces move through a woven field of friction-based interconnectivity. These projects explore behaviour within a networked structure, where both material pliability and strength are activated. Parametric drawing techniques are used to determine geometrical relations within the structure, but they are not used to predict the overall structural behaviour.
Figure 2. Thaw installation, Oslo.

Recent developments in simulation techniques make it possible to form-find and analyse structures that derive their complex curved geometry solely from an erection process in which they are elastically deformed. This approach underlies the 2009 Membrane Restrained Arch by the UDK Berlin (Alpermann 2009), the 2010 ICD/ITKE pavilion at the University of Stuttgart (Lienhard 2011). In the later strips of homogenous material are bent and fixed in supports on site, creating a space of sequential arcs. Cut-outs in the strips provide interconnectivity and stabilize the overall structure.

These representation and simulation approaches are still new, and have been applied to the design of structures of constant material properties. They have not been employed in the design of bending active structures with designed materials, where the challenge is to incorporate the specification of material properties into the design of structures that activate those properties. Here, the ability to connect digital and material parameters when making both the material and the structure is limited by the simplification and elimination of forces within the design and simulation process. For example form-finding using dynamic relaxation, often seen as primary example of including material properties within design, excludes all material behavior other than axial loads.

Figure 3. Thaw installation, time based simulation with physics engine.

Investigations undertaken in the frame of the Thaw project point at another representational approach more suited to the needs of an architectural design process as it “opens up the possibilities for a more dynamic framework in the early stages of design” (Attar 2009). Here a physics solver provides a decentralized approach with full collective physical interdependency and the possibility of integrating participating external forces. This light weight dynamics simulation can already be used as a complementary method for initial conceptualization and to iterate design concepts (Deleuran 2011). The underlying computational methods are yet geared towards visual results and lack generally accuracy which prohibits at the moment the application of this approach in the finely balanced situations that characterize the work with graded materials.
3 Composite Territories Installation

The installation Composite Territories is a variable stiffness, bending active glass fibre reinforced polymer (GFRP) gridshell, approximately 8x5x3.5m in dimension. Exhibited in February 2012 in Copenhagen, the installation initiated ongoing research into approaches capable of incorporating highly specified material performance within the design of bending active structures. The idea underlying the instrumentalisation of GFRP within Composite Territories is that, by precisely controlling and varying the stiffness of a structure, it is possible to encode a complex 3D form into flat, 2D strips. To investigate the implications, the installation proposed a gridshell in which formal complexity is located within the material, via specification, rather than being determined by the constant properties of the material and the level of geometric complexity achieved at the node, as is typically the case.

Under loading, a flat strip bends to assume a 3D form. By small adjustments in section width, achieved through an additive process of specifying and then consolidating different numbers of layers of unidirectional GFRP tape, it is possible to control comparatively large shifts in bending behaviour. To understand and measure the bending behavior of GFRP, and to generate a base of information from which to actively utilize this material property within the digital design process, a series of empirical tests were undertaken on single beams to establish the relationship between load, number of tape layers and deflection. Cantilever bending tests were performed to determine the stiffness of the material samples. So as to isolate bending at the material level, the material parameters considered within the tests were very narrowly focused: the fibre orientation within all material elements was unidirectional along the axis of the member, and only the number through layers was varied. The testing resulted in a look-up table that captured all possible relationships between loading and bending deflection for each layering arrangement elements. The look-up table was embedded within a computational design tool for specifying the number of layers of each strip element within a gridshell so that, under self-weight and fixed-in compression loading, the structure would deflect to match a predefined ‘target shape’. The role of this target shape was to synthesize architectural concerns such as circulation, and views with material parameters, and to orient the material specification process towards a desired outcome.
The layering specification of each element considers both the levels of element and structure, via a two stage process. Firstly, an initial thickness is specified through direct reference to results of material testing. An iterative algorithm iteratively assesses the particular loading condition of each single beam, the deflection that it should make to best match the underlying surface at that point, and consults a look up table to find the closest match from the testing process. As a result a number of layers and a weight are assigned to that beam, and the process continues. This initial specification stage, which considers only the bending of a single beam element, is then refined through analysis at the macro scale of the structure, where topology aids in achieving strength and minimizing material use. At this stage, data gathered from the empirical testing was also used to calibrate a Karamba™ FEA model, which includes material definitions and beam thicknesses. Here we could connect layer specification and local bending with the global simulation of the structure.
Figure 5. Comparison between 3D scan, target and simulated FEA geometry.

While a FARO 3D scan demonstrated that the predictive model was very close to the built reality (Figure 5), the ability for the design process to incorporate the bending behavior was revealed as lacking in several key areas. Partly this concerned accuracy and precision. The approach to cantilever testing allowed us to understand the bending effect, but did not afford a rigorous means of measurement at the material scale. Access to mechanical material testing would have solved this problem, as well as have allowed the calculate properties such as Young’s modulus, which instead had to be estimated using generic information sourced from the internet as a starting point.

Further, there was only a limited ability to link material and FEA simulation. The FEA approach was able to simulate the bending behavior of the whole system, but did not was not able to link this to include the elastic bending of the individual strip elements. These shortcomings led to the questions of how to more accurately measure material behavior, while still linking it to the specification process, and how better to simulate bending active structures so that the models accurately capture both local and global behavior.
4 Integrating Material, Element and Structure – SmartGeometry 2012

The workshop ‘Composite Territories’ at SmartGeometry Conference 2012 (SG workshop) specifically addressed these limitations. At the SG workshop the authors linked architectural and engineering experience with access to the RPI’s material testing facilities. The four day workshop with 10 participants probed the implications of mechanical material testing and a time-based FEA approach for the accurate and reliable representation of a bending-active structure within a design context.

4.1 Design

The SG2012 design focused on the instrumentalisation of elastic deformation where shape is only acquired through the bending of flat strips – either under self-weight or the compressive loading of its end positions. The benefits lie in the system’s simplicity where material properties determine the geometry while joints are simple and standardised. The design objective was to develop a lightweight, resource efficient structure.

The design was limited to two distinct structural conditions to isolate the property of bending. The first was a cantilever, restrained at one end. In this condition bending was induced by the self-weight of the structure. A cantilevering strip typically combined 5 sub elements of potentially different bending stiffness, and had a total length of 2.5m. The second condition was a fixed-in compression arch - a strip restrained at both ends, which typically combined 10 sub elements and had a total length of 5m. This reduction of structural and formal complexity allowed the workshop participants to perform an FE analysis on their own.

In order to link the material behavior with design intent we re-used the goal based
approach used in the Composite Territories installation– where first a shape is defined and later negotiated within the framework of material grading and the possibilities of the overall system.

4.2 Material Making and Testing

The material used in the SG workshop was a single layer 70% glass fiber polymer composite supplied by Polystrand. The heat press process was used to layer the material and manipulate the stiffness of the assembly. During the process of layering the material properties of the assembly changed and the method of superposition could not be applied. Because of this impact of the processing, it was crucial to load test each combination of assemblies in order to feed data back to the computer for proper modeling.

Because the design comprised of independent cantilever strips and arches with no interaction between them, the properties of the interest were stiffness in bending and to the lesser extent stiffness in tension. We used the Instron Universal Loading Testing Frame available at Rensselaer Polytechnic Institute to load-test the material (Figure 7).

![Figure 7. Mechanical Testing on the Instron Universal Loading Testing Frame, RPI](image)

Assorted layering of strips was tasted in tension and bending. For tension we used dog-bone samples while for bending we used plain strips of composite assemblies. Both tests were carried out in the direction along the fibers, and multiple tests were performed to obtain average values. The samples were tested in deformation-controlled settings where specimens were tested up to failure in tension and only up to “reasonable” deformations
in three point bending test.

The tension tests revealed linear behavior far beyond loads experienced in the final model. The ‘reasonable’ deformation in bending was defined as one that the final model will not exhibit. The bending load-test was a standard four-point bending test. It revealed highly nonlinear bending stiffness especially for the specimens fabricated of small number of layers.

![Deflection Diagrams](image)

Figure 8. Superimposed Deflection Diagrams of the 6 Used Layer Configurations.

4.3 Material Specification

In graded material systems, the relationship between material differentiation and shape under loading is very sensitive. Within the simulation process, the starting point is very important. For these reasons, a specification process needs to precede simulation, but to still consider load, deflection and target in order to determine a specific bending stiffness.

One computational approach to estimate the stiffness to be specified is to feed back the stress-strain curves generated from material testing into the design process. An algorithm was written to iterate over each member within the structure, assessing its loading condition (the load of those elements it supports), the deflection that is required to match the underlying ‘target geometry’, and through reference to a look-up table containing the load-deflection relationship generated during material testing assign a number of layers. Once the load and required deflection is calculated, the closest load-deflection relationship determines the layer assignment for that beam element. While an iterative simulation process capable of optimizing material organization would render this step unnecessary, such an approach would also be prohibitively time expensive. Instead, this approach provides an achievable method of quickly specifying bending stiffness by increasing the information from material testing directly incorporated within the design process.

4.4 Translation

In order to get a more complete understanding of the materials bending the data from the parametric modeling environment where translated to the Finite Element Analysis (FEA) software SofistikTM. Here not only the element based system used so far had to be
changed into a node based one but moreover the FEA needed the initial flat state of the strip geometry — where the model so far represented the design target. A python script provided the FEA with all necessary parameters as node coordinates, conditions for connections and support at each node, material properties (E-modulus, specific weight) and specifications for all potential combinations of beam dimension and material. Finally the programming of the load cases within FEA was automatically generated by the script and continuously written into a file that was read by the simulation software.

A back channel from FEA into the design environment read the resulting displacement vector at each node under load and displayed the deformation of the model the design environment. Though not used to its full extend within the SG workshop this approach grants a understanding of global and local behavior of the model — and provides the framework for automatic iteration of material properties to reach an intent shape.

4.5 FEA Simulation

FEA is based on a displacement method, where a matrix solver finds an equilibrium of node displacements matching external load conditions. Bending-active structures present a condition unusual to typical practice, since the deflections largely contribute to the form finding process. Common software packages are rarely able to assist in such a design process as they are made for smaller deflections. A special matrix solver, FE element type and the usage of third order theory analysis are necessary for the analysis.

The usage of GFRP gives great potential for large deformations since the stiffness is low and the strength is high. But GFRP is also very light and therefore bending in the cantilever structure under gravity only takes place if the cantilevers are relatively long. The support constrained bending is more easily solved as the resulting structure is more stable under changing load conditions.

The introduced bending is the primary shape determining component and the analysis of this aspect becomes a central part of the design progress. The two different load scenarios included strips in bending, loaded by pushing the support points together to form arches, and bending through gravity. These analyses, especially the push — analysis, are quickly numerically unstable and need adjustment when the push increments are too large. Once the process is set up, different stiffness distributions can be tested so that the formal design can happen using the FE software as a design tool (Figure 9).
Further development of the design and its tooling would investigate the connectivity of elements within complex structures. The difficulty here is to define the restraints within the limits of the incremental load assembly analysis, because the build up of the structure has to be simulated step by step and each step has implications on the form. The ITKE pavilion demonstrates this difficulty where the single interconnection between beams is introduced post the bending and simulation process.

5 Discussion
The evolving approach to material specification and simulation developed across the Composite Territories installation and SG workshop investigation reveals several
considerations as important. These include behaviour at multiple scales, time-based simulation, and the importance of the starting condition.

In the Composite Territories installation and SG workshop investigation, the making of material links variables at one scale to material behaviour that is simultaneously present on two different scales: the element and the structure. In Composite Territories shell action was dominant at the level of the structure, with bending primarily effecting the local beam level. The design approach, which combined representation of material behaviour at the element level with simulation at the structural level, incorporated both levels but was not able to interweave them. In the SG workshop investigation, where the larger structure is simply a long strip made from sub-strips, bending behaviour prevailed at both scales. In this investigation, the simulation process within Sofistik™ combined both local and global levels within one simulation.

This was based on the shift to a time based process whose starting point was a flat, unstressed state. The process incorporates the assembly, and particularly the gradual stressing of the structure, within the simulation model. It matches the process taken within the 2010 ICD/ITKE pavilion, as well as that taken within Thaw, where material behaviour is introduced through the calibration of elements in a constraint based system. As well as being able to incrementally being able to calculate loads, such a process is highly dependant on its starting condition, which should be an unstressed state. This determination of the starting condition is simpler for geometries that can unfold flat, such as a strip, than for geometries that cannot. This limited the complexity of the SG workshop structure in comparison with Composite Territories, and raises the question of how to move beyond the strip which requires strategies for networked systems.

6 Conclusion

Composites have a unique potential to extend our understanding of bending active structures and the inclusion of material properties into design. Material specification provides the platform however appropriate tools, that can provide architects and engineers with the necessary feedback in the design stage, are not yet at hand. As a means towards developing these tools, the research presented indicates how computational design processes can integrate material properties to develop novel structures that are based on highly specific material properties and behaviours. Analysis of these projects identifies behaviour at multiple scales, time-based simulation, and the importance of implementing incremental loading, since each step has implications upon the final form.

7 Acknowledgments:
The authors would like to acknowledge the organizers of SmartGeometry 2012, the workshop participants and students from Department 8 at KADK, Copenhagen

References:
Physics-Based Generative Design. CAAD Futures Conference 2009.

