
The recipe space
We consider a recipe for a collagen-glue based bi-
opolymer which is mixed with 4 different waste 
stream fibers: wood flour, bark flour, seagrass and 
cotton. The Fibers can occupy at most 30% of the 
material weight, and can at most interact 2 at a 
time. By working at a granulatiry increment of 3%, 
a traditional Design Of Experiment approach would 
yield a Full Factorial matrix of 312 different recipe 
combinations.

Predictive modelling and benchmarking
We use Geometrical Polynomial Fitting (GPF) to create a Response Surface (RS) for each of 
the measured performance metrics. The sampled recipe “grid point” is constructed with 
Z being the mean measure, these points are then interpolated into a 3rd degree polyno-
mial curve and a network surface with position continuity is constructed. Additionally we 
build the standard deviation cloud above and below the RS. 
This GPF is benchmarked against the state-of-the-art models for small datasets: SK 
Learn’s Kernel Ridge Regression at 3rd degree polynomial (PR) and a Gaussian Process 
Regression (GPR). We evaluate 2 metrics:
 1. The accuracy of the test data prediction using GPF compared to the ground truth: 
94%, 97% and 77% of respectively Specific modulus, specific strength and elongation pre-
dictions fall within the standard deviation of the real measurement.
 2.The accuracy of the train data prediction using PR and GPR compared to the ground 
truth: we observe that the GPR fails to capture variation of the data and considers is as 
noise, while the PR tends to overfit by producing a rough response surface.

Training the PLSOM
We implement Erik Berglund and Joaquin Sitte’s modified ver-
sion of Teuvo Kohonen’s Self-Organizing map. While the SOM is 
known to struggle with hyperparameter search, the PLSOM with 
PCA initialization is able to converge , deterministically. We use 
a Bayesian optimizer to find the best Neighborhood Range β for 
a given Full Factorial recipe matrix, while maximizing the spread 
of the combinations over the map nodes, avoiding overcrowd-
ing of the nodes, and reducing quantization and topographic 
error. As a result we obtain an 18x18 map which project our 4D 
recipe space onto 2D. 

Explorative UI interface
The advantage of utilizing a PLSOM is that it allows to intuitively explore the high 
dimensional recipe space directly in the design environment. We develop a UI in-
terface where just by hovering over the trained map, the designer can immediately 
observe the recipe composition, its different performances  with respect to statis-
tics of the ensemble, as well as uncertainties related to the data, irrespective of 
whether the recipe has been physically tested or not. This user-friendly approach 
also allows for exploration of the performance landscape, multi objective masking 
beyond the scope of just obtaining one optimized recipe formulation.

Collecting enough physical samples for dataset composition is one of the main hurdles 
of using Machine Learning workflows in Material Science. In this poster we showcase an 
approach which allows to predict the performance of a combinatorial recipe space for 
biopolymer composites using a relatively low number of experimental lab samples, to an 
accuracy that falls within the bounds of measured standard deviation among the sam-
ples. The approach leverages dimensionality reduction via the PLSOM which allows us to 
specifically select the data samples to be physically produce which can then be fit into 
a Response Surface via GPF. Next steps will explore the potential of using the full output 
of the map as a base dataset for training a neural network, in order to extrapolate per-
formance predictions to recipes that fall outside of the variational bounds of the map.

Data collection
The map is then used to determine the dataset com-
position. The training set is composed of 25 recipe 
combinations that originate from a 5x5 grid sampling 
of the map nodes. The testing set is composed of 30 
radomly selected nodes on the map. Sets of 6 dog 
bone samples per recipe are compression-molded, 
and subjected to physical and structural testing in the 
lab. We report measurements of Youngs Modulus, Ten-
sile Strength, Elongation, Shrinkage and Weight Loss.
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Problem statement
Biopolymer composites are an interesting class of materials to be explored using robotic 3d printing for 
architectural applications. They provide the opportunity to incorporate biodegradable waste-stream 
materials into the built environment. Mixtures and recipes can be tuned across the print to satisfy specific 
performance requirements within the global design. 
However, when considering gradual and continuous grading responding to multiple objectives, rather 
than discrete compositions, two limitations arise:
 1. High dimensional recipe-performance space: Multi-ingredient variation to multi-performance 
response mapping becomes exponentially complicated.
 2. Large quantity of experimental samples: Physical in-lab characterization of continuous recipe 
permutation becomes exponentially unfeasible due to material and time costs. 

Our approach
The project develops an experimental methodology to predict, with sufficient accuracy, the physical 
performance of all ingredient permutations within a recipe space, using a small physical dataset of lab-
samples. By leveraging the associative positioning of Self-Organizing Maps we are able to geometrically fit 
a Polynomial model which outperforms state of the art predictive models. The low-dimensional mapping 
also  allows us to develop an intuitive interface to navigate the ingredient-performance response and 
plugs directly within a computational design workflow. Radicant, CITA (2022)  
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Overview of the different performance Response Surfaces obtained by the different predictive models. The color gradient is the distance to the PLSOM surface.
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