The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell

Paul Nicholas, Elisa Lafuente Hernandez, Christoph Gengnagel

    Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review


    This paper reports the architectural and engineering design, and construction, of The Faraday Pavilion, a GFRP elastic gridshell with an irregular grid topology. Gridshell structures are self-formed through an erection process in which they are elastically deformed, and the prediction and steering of this aspect becomes a central part of both architectural and engineering design processes. While there are existing architectural approaches to determining the geometry of other kinds of form-active structure, as well as new engineering approaches to the simulation of bending active structures, a fast and light-weight design approach to bending active structures is not currently developed.

    In this paper, we introduce an approach to the architectural design of a bending active structure whereby the shell form and grid topology are determined by simulation. Particular features are that the grid topology is not pre-described, but rather emerges as part of the simulation, and that different calculative models relating to the material, element and structural scales are solved and synthesized by extending the technique of dynamic relaxation. Secondly, the results of this design modelling are provided as the input for a quantitative engineering simulation, where the equilibrium shape and load-bearing capacity of the elastically-bent structure is calculated with a non-linear, three-dimensional finite element model within the FEM-package Sofistik. We compare the advantages and disadvantages of both methods, which while complementary have important differences relating to the interaction with the design of the structure, differences in the definition of supports, connections and elements, the speed of calculation and the magnitude and precision of the results.
    Titel2013 Proceedings of the Symposium on Simulation for Architecture and Urban Design
    RedaktørerLiam O’Brien, Burak Gunay, Azam Khan
    Antal sider8
    Publikationsdato7 apr. 2013
    StatusUdgivet - 7 apr. 2013
    BegivenhedSimAUD 2013: Simulation for Architecture and Urban Design - San Diego, CA, USA
    Varighed: 7 apr. 201310 apr. 2013


    KonferenceSimAUD 2013
    BySan Diego, CA


    • Material Activation
    • Computational Design
    • Gridshell
    • bending
    • GFRP

    Kunstnerisk udviklingsvirksomhed (KUV)

    • Ja